Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME Commun ; 4(1): ycae028, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38500704

RESUMEN

While it is acknowledged that alpine soil bacterial communities are primarily driven by season and elevation, there is no consensus on the factors influencing fungi and protists. Here we used a holistic approach of the microbiome to investigate the seasonal dynamics in alpine grasslands, focusing on soil food web interactions. We collected 158 soil samples along elevation transects from three mountains in the Alps, in spring during snowmelt and in the following summer. Using metatranscriptomics, we simultaneously assessed prokaryotic and eukaryotic communities, further classified into trophic guilds. Our findings reveal that the consumers' pressure increases from spring to summer, leading to more diverse and evenly distributed prey communities. Consequently, consumers effectively maintain the diverse soil bacterial and fungal communities essential for ecosystem functioning. Our research highlights the significance of biotic interactions in understanding the distribution and dynamics of alpine microbial communities.

2.
Nat Commun ; 15(1): 1251, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341437

RESUMEN

Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Agricultura , Suelo
3.
Philos Trans R Soc Lond B Biol Sci ; 377(1857): 20210387, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35757878

RESUMEN

Determining the influence of climate in driving the global distribution of soil microbial communities is fundamental to help predict potential shifts in soil food webs and ecosystem functioning under global change scenarios. Herein, we used a global survey including 80 dryland ecosystems from six continents, and found that the relative abundance of ecological clusters formed by taxa involved in bacteria-fungi and bacteria-cercozoa bipartite networks was highly sensitive to changes in temperature and aridity. Importantly, such a result was maintained when controlling for soil, geographical location and vegetation attributes, being pH and soil organic carbon important determinants of the relative abundance of the ecological clusters. We also identified potential global associations between important soil microbial taxa, which can be useful to support the conservation of terrestrial ecosystems under global change scenarios. Our results suggest that increases in temperature and aridity such as those forecasted for the next decades in drylands could potentially lead to drastic changes in the community composition of functionally important bipartite networks within soil food webs. This could have important but unknown implications for the provision of key ecosystem functions and associated services driven by the organisms forming these networks if other taxa cannot cope with them. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.


Asunto(s)
Microbiota , Suelo , Carbono , Ecosistema , Hongos , Suelo/química , Microbiología del Suelo
4.
FEMS Microbiol Ecol ; 97(7)2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34117748

RESUMEN

Tree canopies are colonized by billions of highly specialized microorganisms that are well adapted to the highly variable microclimatic conditions, caused by diurnal fluctuations and seasonal changes. In this study, we investigated seasonality patterns of protists in the tree canopies of a temperate floodplain forest via high-throughput sequencing with group-specific primers for the phyla Cercozoa and Endomyxa. We observed consistent seasonality, and identified divergent spring and autumn taxa. Tree crowns were characterized by a dominance of bacterivores and omnivores, while eukaryvores gained a distinctly larger share in litter and soil communities on the ground. In the canopy seasonality was largest among communities detected on the foliar surface: In spring, higher variance within alpha diversity of foliar samples indicated greater heterogeneity during initial colonization. However, communities underwent compositional changes during the aging of leaves in autumn, highly reflecting recurring phenological changes during protistan colonization. Surprisingly, endomyxan root pathogens appeared to be exceptionally abundant across tree canopies during autumn, demonstrating a potential role of the canopy surface as a physical filter for air-dispersed propagules. Overall, about 80% of detected OTUs could not be assigned to known species-representing dozens of microeukaryotic taxa whose canopy inhabitants are waiting to be discovered.


Asunto(s)
Cercozoos , Rhizaria , Cercozoos/genética , Eucariontes , Estaciones del Año , Árboles
5.
Nat Commun ; 12(1): 3918, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168127

RESUMEN

Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


Asunto(s)
Biodiversidad , Ecosistema , Plantas , Microbiología del Suelo , Agricultura , Animales , Europa (Continente) , Cadena Alimentaria , Bosques , Pradera , Herbivoria , Insectos
6.
Proc Natl Acad Sci U S A ; 117(45): 28140-28149, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33093203

RESUMEN

Land-use intensification can increase provisioning ecosystem services, such as food and timber production, but it also drives changes in ecosystem functioning and biodiversity loss, which may ultimately compromise human wellbeing. To understand how changes in land-use intensity affect the relationships between biodiversity, ecosystem functions, and services, we built networks from correlations between the species richness of 16 trophic groups, 10 ecosystem functions, and 15 ecosystem services. We evaluated how the properties of these networks varied across land-use intensity gradients for 150 forests and 150 grasslands. Land-use intensity significantly affected network structure in both habitats. Changes in connectance were larger in forests, while changes in modularity and evenness were more evident in grasslands. Our results show that increasing land-use intensity leads to more homogeneous networks with less integration within modules in both habitats, driven by the belowground compartment in grasslands, while forest responses to land management were more complex. Land-use intensity strongly altered hub identity and module composition in both habitats, showing that the positive correlations of provisioning services with biodiversity and ecosystem functions found at low land-use intensity levels, decline at higher intensity levels. Our approach provides a comprehensive view of the relationships between multiple components of biodiversity, ecosystem functions, and ecosystem services and how they respond to land use. This can be used to identify overall changes in the ecosystem, to derive mechanistic hypotheses, and it can be readily applied to further global change drivers.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Modelos Biológicos , Bosques , Pradera
7.
Front Microbiol ; 11: 1823, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849427

RESUMEN

Functional traits are increasingly used in ecology to link the structure of microbial communities to ecosystem processes. We investigated two important protistan lineages, Cercozoa and Endomyxa (Rhizaria) in soil using Illumina sequencing and analyzed their diversity and functional traits along with their responses to environmental factors in grassland and forest across Germany. From 600 soil samples, we obtained 2,101 Operational Taxonomic Units representing ∼18 million Illumina reads (region V4, 18S rRNA gene). All major taxonomic and functional groups were present, dominated by small bacterivorous flagellates (Glissomonadida). Endomyxan plant parasites were absent from forests. In grassland, Cercozoa and Endomyxa were promoted by more intensive land use management. Grassland and forest strikingly differed in community composition. Relative abundances of bacterivores and eukaryvores were inversely influenced by environmental factors. These patterns provide new insights into the functional organization of soil biota and indications for a more sustainable land-use management.

8.
FEMS Microbiol Ecol ; 96(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32124916

RESUMEN

Plants modulate the soil microbiota by root exudation assembling a complex rhizosphere microbiome with organisms spanning different trophic levels. Here, we assessed the diversity of bacterial, fungal and cercozoan communities in landraces and modern varieties of wheat. The dominant taxa within each group were the bacterial phyla Proteobacteria, Actinobacteria and Acidobacteria; the fungi phyla Ascomycota, Chytridiomycota and Basidiomycota; and the Cercozoa classes Sarcomonadea, Thecofilosea and Imbricatea. We showed that microbial networks of the wheat landraces formed a more intricate network topology than that of modern wheat cultivars, suggesting that breeding selection resulted in a reduced ability to recruit specific microbes in the rhizosphere. The high connectedness of certain cercozoan taxa to bacteria and fungi indicated trophic network hierarchies where certain predators gain predominance over others. Positive correlations between protists and bacteria in landraces were preserved as a subset in cultivars as was the case for the Sarcomonadea class with Actinobacteria. The correlations between the microbiome structure and plant genotype observed in our results suggest the importance of top-down control by organisms of higher trophic levels as a key factor for understanding the drivers of microbiome community assembly in the rhizosphere.


Asunto(s)
Microbiota , Rizosfera , Bacterias/genética , Hongos/genética , Raíces de Plantas , Microbiología del Suelo , Triticum
9.
J Eukaryot Microbiol ; 67(3): 327-336, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31904883

RESUMEN

Myxomycetes (also called Myxogastria or colloquially, slime molds) are worldwide occurring soil amoeboflagellates. Among Amoebozoa, they have the notable characteristic to form, during their life cycle, macroscopic fruiting bodies, that will ultimately release spores. Some 1,000 species have been described, based on the macroscopic and microscopic characteristics of their fruiting bodies. We were interested in Physarum pusillum (Berk. & M.A. Curtis) G. Lister, a very common species described with two variants, each bearing such morphological differences that they could represent two distinct species. In order to test this, we observed key characters in a large selection of specimens attributed to P.  pusillum, to its synonyms (in particular Physarum gravidum), and to related species. In addition, the small-subunit ribosomal RNA gene was obtained from seven of these specimens. Based on these data, we provide a comprehensive phylogeny of the order Physarida (Eukaryota: Amoebozoa: Conosa: Macromycetozoa: Fuscisporidia). Morphology and phylogeny together support the reinstatement of P. gravidum Morgan 1896 with a neotype here designated, distinct from P. pusillum, here redefined.


Asunto(s)
Physarum/clasificación , Physarum/fisiología , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Análisis de Secuencia de ADN/métodos , ADN Protozoario/genética , Microscopía Electrónica de Rastreo , Filogenia , Physarum/ultraestructura , Esporas Protozoarias/ultraestructura
10.
Front Microbiol ; 11: 592189, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33414768

RESUMEN

Tree canopies provide habitats for diverse and until now, still poorly characterized communities of microbial eukaryotes. One of the most general patterns in community ecology is the increase in species richness with increasing habitat diversity. Thus, environmental heterogeneity of tree canopies should be an important factor governing community structure and diversity in this subsystem of forest ecosystems. Nevertheless, it is unknown if similar patterns are reflected at the microbial scale within unicellular eukaryotes (protists). In this study, high-throughput sequencing of two prominent protistan taxa, Cercozoa (Rhizaria) and Oomycota (Stramenopiles), was performed. Group specific primers were used to comprehensively analyze their diversity in various microhabitats of a floodplain forest from the forest floor to the canopy region. Beta diversity indicated highly dissimilar protistan communities in the investigated microhabitats. However, the majority of operational taxonomic units (OTUs) was present in all samples, and therefore differences in beta diversity were mainly related to species performance (i.e., relative abundance). Accordingly, habitat diversity strongly favored distinct protistan taxa in terms of abundance, but due to their almost ubiquitous distribution the effect of species richness on community composition was negligible.

11.
Mol Ecol Resour ; 20(2): 398-403, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31677344

RESUMEN

We have compiled a database of functional traits for two widespread and ecologically important groups of protists, Cercozoa and Endomyxa (Rhizaria). The functional traits of microorganisms are crucially important for interpreting results from environmental sequencing surveys. Linking morphological and ecological traits to environmental factors is common practice in studies involving micro- and macroorganisms, but is rarely applied to protists. Our database provides functional and ecologically significant traits linked to morphology, nutrition, locomotion and habitats. We discuss how the use of functional traits may help to unveil underlying ecosystem processes. This database is intended as a common reference for the molecular ecology community and will boost the understanding of ecosystem functions, especially those driven by biological interactions.


Asunto(s)
Rhizaria/genética , Cercozoos/clasificación , Cercozoos/genética , ADN Ambiental/genética , Bases de Datos Genéticas , Ecosistema , Fenotipo , Filogenia , Rhizaria/clasificación , Análisis de Secuencia de ADN
12.
FEMS Microbiol Ecol ; 95(10)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31557276

RESUMEN

Forest litter harbors complex networks of microorganisms whose major components are bacteria, fungi and protists. Protists, being highly selective consumers of bacteria and fungi could influence decomposition processes by shifting competitive microbial interactions. We investigated the eukaryotic diversity from 18 samples of one-year beech (Fagus sylvatica) leaf litter by RNA-based high-throughput sequencing of the small-subunit ribosomal RNA gene. By applying a metatranscriptomics approach, we avoided biases inherent to PCR-based methods, and could therefore focus on elusive protistan groups. We obtained 14 589 eukaryotic assembled sequences (contigs) representing 2223 unique taxa. Fungi dominated the eukaryotic assemblage, followed by an equal proportion of protists and plants. Among protists, the phylum Amoebozoa clearly dominated, representing more than twice the proportion of Alveolata (mostly ciliates) and Rhizaria (mostly Cercozoa), which are often retrieved as the dominant protistan groups in soils, revealing potential primer biases. By assigning functional traits to protists, we could assess that the proportion of free-living and heterotrophs was much higher than that of parasites and autotrophs, opening the way to a better understanding of the role played by the protistan communities and how biodiversity interacts with decomposition processes.


Asunto(s)
Amebozoos/aislamiento & purificación , Biodiversidad , Fagus/parasitología , Amebozoos/clasificación , Amebozoos/genética , Eucariontes/clasificación , Eucariontes/genética , Eucariontes/aislamiento & purificación , Fagus/crecimiento & desarrollo , Bosques , Filogenia , Hojas de la Planta/parasitología , Suelo/parasitología , Transcriptoma
13.
Front Microbiol ; 10: 1332, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244819

RESUMEN

Soil protists are increasingly appreciated as essential components of soil foodwebs; however, there is a dearth of information on the factors structuring their communities. Here we investigate the importance of different biotic and abiotic factors as key drivers of spatial and seasonal distribution of protistan communities. We conducted an intensive survey of a 10 m2 grassland plot in Germany, focusing on a major group of protists, the Cercozoa. From 177 soil samples, collected from April to November, we obtained 694 Operational Taxonomy Units representing >6 million Illumina reads. All major cercozoan taxonomic and functional groups were present, dominated by the small flagellates of the Glissomonadida. We found evidence of environmental selection structuring the cercozoan communities both spatially and seasonally. Spatial analyses indicated that communities were correlated within a range of 3.5 m. Seasonal variations in the abundance of bacterivores and bacteria, followed by that of omnivores suggested a dynamic prey-predator succession. The most influential edaphic properties were moisture and clay content, which differentially affected each functional group. Our study is based on an intense sampling of protists at a small scale, thus providing a detailed description of the biodiversity of different taxa/functional groups and the ecological processes involved in shaping their distribution.

14.
FEMS Microbiol Ecol ; 95(4)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30915436

RESUMEN

Protists are the most important predators of soil microbes like bacteria and fungi and are highly diverse in terrestrial ecosystems. However, the structure of protistan communities throughout the soil profile is still poorly explored. Here, we used Illumina sequencing to track differences in the relative abundance and diversity of Cercozoa, a major group of protists, at two depths; 10-30 cm (topsoil) and 60-75 cm (subsoil) in an agricultural field in Germany. At the two depths, we also distinguished among three soil compartments: rhizosphere, drilosphere (earthworm burrows) and bulk soil. With increasing depth, we found an overall decline in richness, but we were able to detect subsoil specific phylotypes and contrasting relative abundance patterns between topsoil and subsoil for different clades. We also found that the compartment effect disappeared in the subsoil when compared to the topsoil. More studies are now needed to describe and isolate these possibly subsoil specific phylotypes and better understand their ecology and function.


Asunto(s)
Cercozoos/aislamiento & purificación , Ecosistema , Microbiota , Suelo/parasitología , Agricultura , Biodiversidad , Cercozoos/clasificación , Cercozoos/genética , Alemania , Microbiota/genética , Rizosfera , Suelo/química
15.
J Eukaryot Microbiol ; 66(4): 538-544, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30329204

RESUMEN

Myxogastria (also called Myxomycetes or plasmodial slime-moulds) are mostly known through their usually conspicuous fruiting bodies. Another unifying trait is the presence of a facultative flagellate stage along with the obligate amoeboid stage. Here we show with two-gene phylogenies (SSU rRNA and EF-1alpha genes) that the incertae sedis, non-flagellate Echinosteliopsis oligospora belongs to the dark-spore clade (Fuscisporidia) of the Myxogastria. In addition, we confirm that Echinostelium bisporum, firstly described as a protostelid, belongs to the Echinosteliida, which are divided into three major clades and are paraphyletic to the remaining Fuscisporidia.


Asunto(s)
Mixomicetos/clasificación , Filogenia , Mixomicetos/genética , Factor 1 de Elongación Peptídica/análisis , Proteínas Protozoarias/análisis , ARN Protozoario/análisis , ARN Ribosómico/análisis
16.
Mol Ecol Resour ; 18(2): 229-239, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29058814

RESUMEN

We describe the performance of a new metabarcoding approach to investigate the environmental diversity of a prominent group of widespread unicellular organisms, the Cercozoa. Cercozoa is an immensely large group of protists, and although it may dominate in soil and aquatic ecosystems, its environmental diversity remains undersampled. We designed PCR primers targeting the hypervariable region V4 of the small subunit ribosomal RNA (SSU or 18S) gene, which is the recommended barcode marker for Cercozoa. The length of the amplified fragment (c. 350 bp) is suitable for Illumina MiSeq, the most cost-effective platform for molecular environmental surveys. We provide barcoded primers, an economical alternative to multiple libraries for multiplex sequencing of over a hundred samples. In silico, our primers matched 68% of the cercozoan sequences of the reference database and performed better than previously proposed new-generation sequencing primers. In mountain grassland soils and in biological soil crusts from a variety of climatic regions, we were able to detect cercozoan sequences encompassing nearly the whole range of the phylum. We obtained 901 operational taxonomic units (OTUs) at 97% similarity threshold from 26 samples, with c. 50,000 sequences per site, and only 8% of noncercozoan sequences. We could report a further increase in the diversity of Cercozoa, as only 43% of the OTUs were 97%-100% similar to any known sequence. Our study thus provides an advanced tool for cercozoan metabarcoding and to investigate their diversity and distribution in the environment.


Asunto(s)
Cercozoos/clasificación , Cercozoos/genética , Código de Barras del ADN Taxonómico/métodos , Cartilla de ADN/genética , Variación Genética , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Microbiología Ambiental , Filogenia , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
17.
PLoS One ; 12(3): e0173765, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28288199

RESUMEN

Interactions occur between two or more organisms affecting each other. Interactions are decisive for the ecology of the organisms. Without direct experimental evidence the analysis of interactions is difficult. Correlation analyses that are based on co-occurrences are often used to approximate interaction. Here, we present a new mathematical model to estimate the interaction strengths between taxa, based on changes in their relative abundances across environmental gradients.


Asunto(s)
Consorcios Microbianos/genética , Modelos Teóricos , Microbiología del Suelo , Secuencia de Bases , Ecosistema , Alemania , Concentración de Iones de Hidrógeno , Consorcios Microbianos/fisiología , Modelos Estadísticos , Distribución Aleatoria , Suelo/química
18.
Biol Direct ; 11(1): 69, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-28031045

RESUMEN

BACKGROUND: Acanthamoebidae is a "family" level amoebozoan group composed of the genera Acanthamoeba, Protacanthamoeba, and very recently Luapeleamoeba. This clade of amoebozoans has received considerable attention from the broader scientific community as Acanthamoeba spp. represent both model organisms and human pathogens. While the classical composition of the group (Acanthamoeba + Protacanthamoeba) has been well accepted due to the morphological and ultrastructural similarities of its members, the Acanthamoebidae has never been highly statistically supported in single gene phylogenetic reconstructions of Amoebozoa either by maximum likelihood (ML) or Bayesian analyses. RESULTS: Here we show using a phylogenomic approach that the Acanthamoebidae is a fully supported monophyletic group within Amoebozoa with both ML and Bayesian analyses. We also expand the known range of morphological and life cycle diversity found in the Acanthamoebidae by demonstrating that the amoebozoans "Protostelium" arachisporum, Dracoamoeba jormungandri n. g. n. sp., and Vacuolamoeba acanthoformis n.g. n.sp., belong within the group. We also found that "Protostelium" pyriformis is clearly a species of Acanthamoeba making it the first reported sporocarpic member of the genus, that is, an amoeba that individually forms a walled, dormant propagule elevated by a non-cellular stalk. Our phylogenetic analyses recover a fully supported Acanthamoebidae composed of five genera. Two of these genera (Acanthamoeba and Luapeleameoba) have members that are sporocarpic. CONCLUSIONS: Our results provide high statistical support for an Acanthamoebidae that is composed of five distinct genera. This study increases the known morphological diversity of this group and shows that species of Acanthamoeba can include spore-bearing stages. This further illustrates the widespread nature of spore-bearing stages across the tree of Amoebozoa. REVIEWERS: This article was reviewed by Drs. Eugene Koonin, Purificacion Lopez-Garcia and Sandra Baldauf. Sandra Baldauf was nominated by Purificacion Lopez-Garcia, an Editorial Board member.


Asunto(s)
Acanthopodina/clasificación , Filogenia , Proteínas Protozoarias/genética , Acanthopodina/citología , Acanthopodina/genética , Evolución Molecular , Análisis de Secuencia de ADN
19.
Sci Rep ; 6: 19068, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26750872

RESUMEN

This study reveals the diversity and distribution of two major ubiquitous groups of soil amoebae, the genus Acanthamoeba and the Myxomycetes (plasmodial slime-moulds) that are rarely, if ever, recovered in environmental sampling studies. We analyzed 150 grassland soil samples from three Biodiversity Exploratories study regions in Germany. We developed specific primers targeting the V2 variable region in the first part of the small subunit of the ribosomal RNA gene for high-throughput pyrotag sequencing. From ca. 1 million reads, applying very stringent filtering and clustering parameters to avoid overestimation of the diversity, we obtained 273 acanthamoebal and 338 myxomycete operational taxonomic units (OTUs, 96% similarity threshold). This number is consistent with the genetic diversity known in the two investigated lineages, but unequalled to date by any environmental sampling study. Only very few OTUs were identical to already known sequences. Strikingly different OTUs assemblages were found between the three German regions (PerMANOVA p.value = 0.001) and even between sites of the same region (multiple-site Simpson-based similarity indices <0.4), showing steep biogeographical gradients.


Asunto(s)
Amoeba/genética , Pradera , Metagenómica , Suelo/parasitología , Análisis por Conglomerados , Variación Genética , Filogenia , Análisis de Componente Principal
20.
J Eukaryot Microbiol ; 63(4): 453-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26663217

RESUMEN

Myxomycetes or plasmodial slime molds are widespread and very common soil amoebae with the ability to form macroscopic fruiting bodies. Even if their phylogenetic position as a monophyletic group in Amoebozoa is well established, their internal relationships are still not entirely resolved. At the base of the most intensively studied dark-spored clade lies the order Echinosteliales, whose highly divergent small subunit ribosomal (18S) RNA genes represent a challenge for phylogenetic reconstructions. This is because they are characterized by unusually long variable helices of unknown secondary structure and a high inter- and infraspecific divergence. Current classification recognizes two families: the monogeneric Echinosteliaceae and the Clastodermataceae with the genera Barbeyella and Clastoderma. To better resolve the phylogeny of the Echinosteliales, we obtained three new small subunit ribosomal (18S) RNA gene sequences of Clastoderma and Echinostelium corynophorum. Our phylogenetic analyses suggested the polyphyly of the family Clastodermataceae, as Barbeyella was more closely related to Echinostelium arboreum than to Clastoderma, while Clastoderma debaryanum was the earliest branching clade in Echinosteliales. We also found that E. corynophorum was the closest relative of the enigmatic Semimorula liquescens, a stalkless-modified Echinosteliales. We discuss possible evolutionary pathways in dark-spored Myxomycetes and propose a taxonomic update.


Asunto(s)
Amebozoos/clasificación , Amebozoos/genética , Evolución Molecular , Variación Genética , Mixomicetos/clasificación , Mixomicetos/genética , Filogenia , Amoeba/genética , Amebozoos/fisiología , ADN Protozoario/genética , ADN Ribosómico/genética , Mixomicetos/fisiología , ARN Ribosómico , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...